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Abstract
Stereoencephalography (SEEG) is a powerful technique for intracranial recording of brain activity, crucial for localizing epileptic foci
and studying neural dynamics. However, interpreting SEEG data is computationally demanding due to the high spatial and temporal
resolution of recordings, significant data volume, electrode placement variability, intrinsic noise, and complex, non-stationary signals.
This paper proposes a memory-efficient SEEG data processing pipeline designed to manage large datasets effectively while preserving
critical signal information. The preprocessing pipeline includes loading and inspecting raw data, applying zero-phase FIR band-pass
filters (1-50 Hz) to eliminate noise without distorting phase relationships, and segmenting data for frequency-specific analysis. Frequency
domain analysis is conducted using Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Morlet wavelet transforms,
and Welch’s method for Power Spectral Density (PSD) estimation. These methods enable robust exploration of frequency dynamics,
capturing both transient and stable oscillatory brain activity. The presented pipeline maintains computational efficiency through optimized
windowing parameters and filtering strategies, ensuring high-quality data interpretation without extensive resource demands. While
primarily linear and limited by fixed parameters and potential redundancy in time-frequency overlaps, the approach successfully addresses
common challenges in SEEG interpretation, including artifact reduction, spectral clarity, and reproducibility. This work offers a practical
framework for large-scale SEEG analysis, facilitating clinical decision-making and advanced neurophysiological research.
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1. Introduction
Stereoencephalography (SEEG) is an advanced technique used
for recording intracranial brain activity in patients with epilepsy,
particularly those who are candidates for epilepsy surgery. Un-
like traditional scalp electroencephalography (EEG), which
captures brain activity from the surface of the skull, SEEG
involves the insertion of multiple electrodes directly into the
brain, allowing for precise, localized measurements of elec-
trical activity in specific regions of the brain. (Youngerman
et al. 2019) This technique provides high spatial resolution
and enables the study of deep brain structures that are other-
wise difficult to access using non-invasive methods. (Pati and
Gonzalez-Martinez 2024)

The primary clinical application of SEEG is in the pre-
surgical mapping of epileptic brain regions. (George and
Gonzalez-Martinez 2020) By identifying areas of the brain
responsible for seizure activity, clinicians can make informed
decisions about whether and where to perform surgical inter-
ventions, such as resecting the epileptic focus. Beyond epilepsy,
SEEG is also used to study a variety of neurological and neu-
rophysiological phenomena, such as brain connectivity, cog-
nitive function, and network dynamics in healthy individuals
and those with neurological disorders. (Bernabei et al. 2021)

Given the high sensitivity that SEEG has and the ability to
record deep structures of the brain, it is also a useful tool in the
study of the brain at different mental stages as seen during sleep
and meditation. (Moroni et al. 2007; Bauer, Fomina, and Vugt
2022) At the same time, given the higher sensitivity of SEEG

compared to traditional EEG recordings, their interpretations
require higher processing capacity for computers. (Herff et
al. 2020) As such, this paper outlines a method of processing
SEEG data and further analysis in a data-efficient way. Other
common methodologies used in SEEG processing are also
explored.

2. Interpreting SEEG Data

Interpreting SEEG data involves analyzing the electrical signals
recorded from the brain to understand neuronal activity from
a population of neurons. These signals are often time-varying,
with different oscillatory patterns associated with various cog-
nitive states or pathologies, including seizure onset, spread,
and termination. The most commonly studied brain rhythms
in EEG are included in Table 1.

For the interpretation of SEEG data, researchers and clin-
icians often focus on the frequency, amplitude, and phase of
these oscillations, particularly in relation to functional connec-
tivity between brain regions and network dynamics. Advanced
techniques, such as time-frequency analysis (using methods
like FFT, wavelet transforms, and coherence analysis), are em-
ployed to investigate how brain activity changes over time
and how different regions of the brain interact.(Frauscher et
al. 2017)
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Table 1. Commonly Studied Brain Rhythms and their Function

Wave Frequency (Hz) Physiological Function

Delta waves 1–4 Hz Typically associated with deep
sleep or brain inactivity.

Theta waves 4–8 Hz Often linked to drowsiness, emo-
tional processing, or working
memory tasks.

Alpha waves 8–13 Hz Associated with relaxed alert-
ness, especially when the individ-
ual is awake and at rest.

Beta waves 13–30 Hz Often related to motor activity,
movement, and active thinking.

Gamma waves 30–50 Hz Linked to cognitive processes like
attention, memory, and sensory
processing.

2.1 Challenges in SEEG data interpretation
However, the complexities of SEEG data present several inter-
pretative challenges:

2.1.1 Data Complexity and Noise
Intrinsic Noise and Artifacts: SEEG recordings are subject
to noise from a variety of sources, including electrical inter-
ference, muscle artifacts, and eye movements. Unlike scalp
EEG, where artifacts from muscle contractions (e.g., facial
muscles) are common, SEEG electrodes are more prone to
noise generated by the surrounding tissues, including brain
movement or electrical activity from non-neuronal sources.
(Muthukumaraswamy 2013) Effective artifact rejection and
noise reduction techniques are essential for preserving the in-
tegrity of the data. This is computationally achieved by using
band-pass and notch filtering.

Electrode Placement Variability: The placement of SEEG
electrodes is highly specific to each patient’s anatomy. (Grana-
dos et al. 2021) Variability in electrode positioning, even with
advanced imaging techniques (e.g., MRI and CT scans), is
inevitable and can complicate the interpretation of the data.
For instance, a signal recorded from an electrode may be
influenced by neighboring regions or structures, leading to
challenges in accurately localizing the source of the activity.
Various different references exist in order to minimize this
variability.

2.1.2 High Dimensionality and Volume of Data
Large-scale Data: SEEG involves the simultaneous recording
of data from multiple electrodes across different brain regions,
generating large volumes of data that are both spatially and
temporally rich.(Youngerman et al. 2019) A typical SEEG
study may record from dozens or even hundreds of electrodes,
each providing continuous data over many hours. The sheer
amount of data makes it challenging to manually interpret and
analyze, even after implementing montages for simplifying
the displayed data. (Frauscher et al. 2017)

High Temporal Resolution: The high sampling rate (often
1-2 kHz) and continuous nature of SEEG recordings provide
high temporal resolution, which is necessary for detecting fast

neural dynamics, such as seizure propagation. However, the
high resolution also results in massive datasets, complicating
the computational analysis and storage of data. (Frauscher
et al. 2017) Efficient processing algorithms are needed to han-
dle the large amount of information in real time. This com-
pounded with the presence of multiple participants along with
multiple electrodes per participant makes this activity even
more computationally taxing.

2.1.3 Spatiotemporal Dynamics of Brain Activity
Complex Brain Networks: SEEG provides detailed spatial in-
formation about brain activity, but the interpretation of these
signals requires understanding the complex, dynamic inter-
actions between brain regions. Localized activity may not
fully represent the broader network dynamics that are occur-
ring across multiple regions of the brain. (Lagarde et al. 2022)
Identifying functional connectivity—the interaction between
different brain regions—requires sophisticated mathematical
models that can account for the temporal and spatial complex-
ity of the data.

Dynamic Temporal Patterns: SEEG signals are dynamic
and can vary across time scales, from the rapid fluctuations of
gamma activity to the slower oscillations of delta and theta
waves. These different rhythms often coexist and may overlap
in time, making it difficult to dissect the individual contribu-
tions of different brain regions to observed phenomena (e.g.,
seizures or cognitive tasks). (Ye et al. 2022) Analyzing these
patterns requires methods that can simultaneously capture both
short-term dynamics and longer-term trends.

2.1.4 Interpretation of Non-Stationary Signals
Non-stationarity: Unlike some simpler signals, SEEG data
is non-stationary, meaning that its statistical properties (e.g.,
mean and variance) change over time. (Dikanev et al. 2005)
This is particularly evident during events like seizures, where
there is a sudden shift in brain activity. Standard signal process-
ing techniques like the Fast Fourier Transform (FFT) assume
stationarity, which can limit their ability to capture the full
range of temporal dynamics in non-stationary data. In order
to bypass this issue, time segments can be divided and FFT
applied independently to each time segment. (Wang and Velu-
volu 2017) But this requires the knowledge of cut-off points
prior and therefore would be most useful for controlled trials
or data that is correlated with clinical observations (as would
be observed during seizures).

Need for Advanced Time-Frequency Analysis: To deal
with non-stationary signals, techniques like Wavelet Trans-
form, Short-Time Fourier Transform (STFT), or Hilbert-
Huang Transform (HHT) are more suitable, as they pro-
vide both time and frequency resolution. (Wacker and Witte
2013) However, these methods require significant computa-
tional power, particularly when analyzing large-scale, multi-
electrode recordings. However, if the electrode contacts are
properly identified, it is reasonable to compare single electrode
recordings across subjects.



Journal of Analytical Neuroscience 3

3. Role of Computing Power in SEEG Analysis
The evolution of computing power has significantly impacted
the way SEEG data are analyzed, allowing for more sophisti-
cated methods and more efficient processing. Some key ways
in which increased computing power addresses the challenges
of SEEG interpretation include:

3.1 Real-Time Analysis and Processing
With more powerful computational tools, it is now possible to
process and analyze SEEG data in real-time. This is especially
important for clinical applications, such as guiding neurosurgi-
cal procedures during awake surgery. (Nagahama et al. 2023)
Real-time signal processing allows for immediate feedback
on brain activity, helping clinicians make informed decisions
about the location of epileptic foci or optimal surgical targets.

3.2 Handling Large Datasets
Advances in computing have made it feasible to handle the
large volumes of SEEG data generated from multi-electrode
arrays. High-performance computing clusters or cloud-based
infrastructure enable efficient storage, processing, and analysis
of these datasets, which would have been computationally
prohibitive just a few years ago. (Cai et al. 2022) This has
opened the door to more in-depth analyses of brain activity
over extended periods, from several hours to days.

3.3 Advanced Machine Learning and AI
Machine learning (ML) and artificial intelligence (AI) algo-
rithms have benefited from the increasing availability of com-
puting power, allowing for automated feature extraction, pat-
tern recognition, and predictive modeling of SEEG data. These
techniques can identify complex patterns in the data that might
be difficult for human researchers to detect. For example, ML
algorithms can be trained to predict seizure onset based on
historical SEEG data, potentially improving the accuracy of
surgical planning. (Bernabei et al. 2023) Deep learning meth-
ods, such as neural networks, are increasingly used to classify
brain states, detect seizure activity, or predict the outcome of
neurosurgical interventions. (Johnson et al. 2022) These meth-
ods are particularly powerful in identifying subtle temporal
or spatial features in SEEG data that may not be immediately
apparent through traditional analytical techniques.

3.4 Improved Signal Decomposition and Source Localiza-
tion
Source localization techniques, which attempt to pinpoint the
origin of brain activity recorded by SEEG electrodes, have
also benefited from improved computational methods. Using
techniques like beamforming, inverse modeling, or dynamic
causal modeling (DCM), researchers can better estimate the
sources of brain activity and understand how these sources
interact within complex neural networks. (Cooray et al. 2016)
Additionally, advancements in signal decomposition methods
(such as Independent Component Analysis (ICA)) have made
it easier to separate different sources of activity, including the

removal of artifacts like eye movements or muscle contractions.
(Medina Villalon et al. 2024)

3.5 Multi-Scale Analysis and Modeling
The increased computing capacity enables multi-scale anal-
ysis, which allows researchers to simultaneously study brain
activity at different levels of analysis—ranging from individ-
ual electrodes to entire brain networks. This is essential for
understanding how localized activity in a single brain region
contributes to broader network dynamics. Advanced sim-
ulation models also benefit from more powerful computers.
Researchers can now create detailed, realistic brain network
models that simulate the dynamics of brain activity at a larger
scale, helping to link SEEG data with computational neuro-
science.

4. Proposed Processing Pipeline
The proposed pipeline aims to process SEEG data efficiently,
particularly concerning memory usage for large datasets. Fig-
ure 1 provides a schematic overview.

Figure 1. Schematic of Signal Processing Pipeline. Illustrates the flow from
raw data loading, through filtering and frequency analysis stages.
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4.1 Preprocessing
The preprocessing pipeline is crucial for preparing the raw
signal data for further analysis. In this implementation, we
begin by loading and inspecting the data, followed by filtering
to remove noise and ensure that the signal components of
interest are preserved.

4.1.1 Initial Data Loading and Inspection
The raw data used in this study are stored in the European Data
Format (EDF), which is commonly used for storing physiologi-
cal signals, including EEG data. Each dataset typically contains
continuous recordings from multiple channels, and the signals
are sampled at a rate of 1024 Hz. This sampling rate provides
adequate resolution to capture the fast dynamics of brain activ-
ity. The channel configuration adheres to the standard 10-20
system, which is a widely used electrode arrangement for EEG
studies, ensuring consistency across datasets and comparabil-
ity of results. After loading the data, an initial inspection is
performed to check for any obvious issues such as missing or
corrupted data. This inspection also involves visualizing the
signals across different channels to ensure that the data quality
is sufficient for further processing.

4.1.2 Filtering Implementation
Once the raw data is inspected, we apply a series of filtering
steps to remove unwanted noise and emphasize the frequency
bands of interest. A Finite Impulse Response (FIR) filter is
employed due to its precise frequency characteristics and lack
of phase distortion. The filter is designed using the Hamming
window method, which provides a good balance between the
filter’s transition width and its ability to minimize ripple in the
passband. The filter order is set to 3381 points, which provides
a high level of frequency selectivity.

The filtering process involves zero-phase forward and re-
verse filtering, ensuring that no phase distortion is introduced
into the signal. This step is essential, particularly for EEG
signals, where maintaining the phase relationships between
frequencies is critical for accurate analysis. The transition band-
width specifications are carefully chosen to maintain a sharp
cutoff while avoiding significant signal distortion. The lower
transition is set at 1.00 Hz, while the upper transition is set at
12.50 Hz (example range, adjusted per band), which allows
us to preserve the essential low-frequency components of the
signal while removing high-frequency noise. The stopband
attenuation is set to 53 dB, which ensures that any unwanted
frequencies outside the passband are effectively attenuated. The
passband ripple is kept to a minimal 0.0194, ensuring a smooth
frequency response within the desired frequency range.

4.1.3 Filter Response Characteristics
The primary frequency range of interest for our analysis spans
from 1 to 50 Hz. This range encompasses several key neural
oscillations, including delta (1-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands,
which are associated with different cognitive and physiological

processes. To capture these frequencies, we implement indi-
vidual band-pass filters for each of the neural oscillation bands.
The delta, theta, alpha, beta, and gamma bands are defined
based on the typical frequency ranges observed in EEG re-
search. These filters are used to isolate the relevant frequency
components for further analysis, allowing us to explore the
distinct dynamics of each frequency band.

4.2 Frequency Analysis Implementation
Once the preprocessing steps are complete, we proceed with
frequency domain analysis to examine the spectral characteris-
tics of the processed signals. This is achieved using a combina-
tion of spectral analysis methods, time-frequency techniques,
and power spectral density (PSD) estimation.

4.2.1 Spectral Analysis Methods
The primary method for spectral analysis is the Fast Fourier
Transform (FFT), a widely used algorithm that converts the
time-domain signal into the frequency domain. For our imple-
mentation, we use NumPy’s FFT module, which is optimized
for efficient computation. The signal is divided into segments
of 4 seconds (4096 samples), a duration that provides sufficient
frequency resolution while balancing computational efficiency.
Each segment is windowed using a Hanning window to min-
imize spectral leakage, and the segments are overlapped by
50%, allowing for better frequency resolution and reducing
edge artifacts. This configuration ensures that we capture the
essential spectral features while maintaining a high degree of
temporal resolution.

4.2.2 Time-Frequency Analysis
In addition to the standard FFT, we apply time-frequency
analysis techniques to capture the dynamic changes in fre-
quency content over time. The Short-Time Fourier Trans-
form (STFT) is used for this purpose. In this method, the signal
is divided into overlapping windows, with a window size of
2 seconds (2048 samples) and a step size of 0.5 seconds (512
samples). This setup allows us to track the frequency content
of the signal at a relatively fine time scale, offering insights
into how the spectral components evolve over time. The fre-
quency resolution of the STFT is set to 0.5 Hz, which ensures
sufficient precision for identifying oscillatory activity within
the frequency bands of interest.

Additionally, wavelet analysis is employed to provide a
more flexible approach to time-frequency decomposition. The
Morlet wavelet, a complex sinusoid modulated by a Gaussian
window, is chosen for its good frequency localization proper-
ties. We use a frequency range of 1-50 Hz, encompassing the
typical frequency bands seen in EEG data, and the scales are
logarithmically spaced to capture both low and high-frequency
components with appropriate resolution. The number of cy-
cles in the Morlet wavelet is set to 7, which provides a good
trade-off between time and frequency localization.
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4.2.3 Power Spectral Density Estimation
To estimate the power distribution across frequencies, we apply
Welch’s method for Power Spectral Density (PSD) estimation.
This method involves dividing the signal into overlapping seg-
ments, each 4 seconds in length, with a 50% overlap to ensure
good frequency resolution. The segments are windowed us-
ing a Hanning window to reduce spectral leakage, and the
resulting periodograms are averaged to obtain a more stable
estimate of the PSD. The averaging process uses the mean of
the periodograms across all segments, which helps to smooth
out noise and ensures that the power spectrum is accurately
estimated. Welch’s method is particularly useful for reducing
variance in the spectral estimate, providing a clearer picture of
the underlying signal power at different frequencies.

5. Discussion
5.1 Consideration of Alternative Analytical Methods
While the methods outlined above were selected for their ro-
bustness and suitability for the analysis of EEG signals, several
other analytical techniques were considered and ultimately
not used. One such method is the Wavelet Transform (WT)
in its broader form, including continuous wavelet transforms
(CWT) with wavelets other than the Morlet wavelet. While
wavelet analysis provides excellent time-frequency resolution,
we opted for the Morlet wavelet due to its well-established
performance in EEG studies, particularly in capturing oscil-
latory brain activity.(Ghuman, McDaniel, and Martin 2011)
The CWT can offer highly detailed time-frequency maps,
but its computational cost can be prohibitive, especially for
large datasets, and the choice of wavelet can greatly influence
the results, requiring careful selection and validation.(Tary,
Baan, and Dettmer 2018) Thus, for the purposes of this study,
we preferred the discrete and computationally more efficient
version of wavelet analysis that the Morlet wavelet provides.

Another alternative considered was Principal Component
Analysis (PCA), which can reduce the dimensionality of EEG
data and potentially highlight significant patterns of brain ac-
tivity.(Lagerlund, Sharbrough, and Busacker 2004) However,
PCA was not chosen because it primarily focuses on variance
across the entire dataset rather than specific frequency compo-
nents, which are the primary focus of our study. The ability of
PCA to isolate meaningful oscillatory patterns is more suited
for exploratory data analysis or when dealing with large sets of
multivariate data, but it is not ideal for the frequency-specific
analysis required in our study. Similarly, methods like Inde-
pendent Component Analysis (ICA) were not pursued, as ICA
is more useful for separating independent sources of activity
(such as artifact rejection or source localization) rather than for
analyzing spectral power within predefined frequency bands.
(López-Madrona et al. 2023)

Nonlinear dynamic methods, such as Lyapunov Exponent
or Fractal Dimension, were also briefly considered. These
methods can be used to assess the complexity or chaotic behav-
ior of EEG signals, which could be relevant for specific research
questions, particularly in studies of brain dynamics or epilepsy.
(Adeli, Ghosh-Dastidar, and Dadmehr 2007) However, in this

study, the primary goal is to assess frequency-specific oscil-
lations and their power spectra, which is better addressed by
linear spectral methods like FFT, STFT, and Welch’s PSD
estimation. Nonlinear methods, while insightful for certain
types of data, are not well-suited for the more systematic and
frequency-focused analysis researchers typically aim to per-
form, and their interpretation in the context of EEG signals
can be challenging without extensive prior knowledge.

Finally, time-domain analysis methods such as the use of
autocorrelation functions or direct peak detection in the raw
signal were considered. However, these methods are generally
less effective in separating overlapping frequency components,
which is essential in EEG signal analysis, where multiple oscil-
latory rhythms can be present simultaneously. (Morales and
Bowers 2022) Time-domain analysis methods are often limited
by the difficulty in resolving these overlapping frequencies,
which is why frequency-domain and time-frequency tech-
niques were preferred.

5.2 Strengths of the Analysis Approach
Comprehensive Frequency Band Analysis Clear separation
of oscillatory bands: The use of band-pass filters for specific
frequency ranges (e.g., delta, theta, alpha, beta, gamma) allows
for clear and targeted analysis of distinct neural oscillations.
These bands are well-established in neuroscience research and
correlate with various cognitive and physiological states, such
as attention, relaxation, and motor activity. Preservation of
spectral properties: The FIR filter design, particularly with
the Hamming window and zero-phase forward and reverse
filtering, helps maintain the integrity of the signal’s spectral
properties, ensuring that the phase relationships between fre-
quency components are not distorted.

Well-established Signal Processing Methods FFT and STFT:
The use of the Fast Fourier Transform (FFT) and Short-Time
Fourier Transform (STFT) provides robust methods for fre-
quency analysis. These methods are widely recognized in the
field and are effective at detecting periodic oscillatory activity
in EEG data. Widely accepted in EEG research: The use of the
Hanning window for segmenting data and Welch’s method
for Power Spectral Density (PSD) estimation are standard tech-
niques in EEG signal processing. Their application ensures
comparability with other studies and provides reliable results
for spectral power analysis.

Time-Frequency Resolution with Wavelet Analysis Morlet
Wavelet for Time-Frequency Analysis: The Morlet wavelet,
particularly with logarithmically spaced scales, provides ex-
cellent time-frequency resolution, enabling detailed analysis
of non-stationary signals like EEG. This method is effective
in capturing transient events and frequency shifts over time,
which is crucial for understanding dynamic brain activity.

Noise Reduction and Signal Clarity Filtering to remove noise:
The use of a high-quality FIR filter with a high stopband atten-
uation ensures that unwanted noise (e.g., from muscle artifacts
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or electrical interference) is effectively reduced. The minimal
passband ripple further guarantees that the signal remains clean
and reflective of true brain activity. More aggressive methods
for noise reduction consequently leads to loss of true data.

Reproducibility Parameter transparency: The explicit de-
tailing of the preprocessing pipeline (e.g., filter specifications,
segment lengths, overlap percentages) increases the repro-
ducibility of the analysis. This is a key strength, as other
researchers can replicate the same procedures using the same
parameters, ensuring that the findings are both reliable and
reproducible.

5.3 Weaknesses and Limitations
Limited to Linear Analysis Assumption of linearity: Tech-
niques like FFT, STFT, and Welch’s method assume that the
signals are linear and stationary within each segment. While
these methods are effective for capturing oscillatory compo-
nents, they may not fully account for more complex, nonlinear
interactions in the data. Nonlinear methods (e.g., Lyapunov
Exponent, Fractal Dimension) could provide additional in-
sights into chaotic brain activity, but these were not used in
this analysis. Inability to fully capture transient or complex
brain dynamics: While the Morlet wavelet provides some flex-
ibility, methods like the STFT and FFT may still struggle
to capture highly transient or rapidly evolving brain activ-
ity, which could limit their applicability in certain types of
dynamic brain states.

Fixed Parameters for Filtering and Windowing Fixed filter
parameters: The choice of filter cutoff frequencies and the
filter order is fixed. This may not be optimal for all types of
data or across different experimental conditions. For instance,
the 1-12.5 Hz cutoff range might not suit data from certain
cognitive tasks that require a different frequency range. The
filter’s effectiveness is also contingent on the data quality; if the
raw signal contains strong artifacts near the cutoff frequencies,
it might still leak into the passband, leading to distortions.
Window size in STFT and Wavelet: The window size for
STFT (2 seconds) and the number of cycles for wavelet analysis
(7 cycles) may not be ideal for all signals. Depending on the
frequency components and the length of the events in the data,
some researchers may opt for shorter or longer windows for
better time or frequency resolution.

Potential Data Loss Due to Overlap in STFT Overlap in STFT:
While the 50% overlap used in STFT helps balance time and
frequency resolution, it can still result in redundancy, especially
for very long datasets. Some temporal details may be lost if
the signal contains fast, transient features that are not fully
captured in the windowed segments. The overlap parameter
can be optimized, but it might still limit temporal resolution
for extremely fast events.

Limited Temporal Resolution in Frequency Analysis Trade-
off between time and frequency resolution: Methods like FFT

and STFT involve trade-offs between time and frequency res-
olution. The segment length (e.g., 4 seconds for FFT) affects
the frequency resolution but reduces the temporal resolution.
This can be problematic when analyzing fast, transient neu-
ral activity that requires both high temporal and frequency
resolution.

Potential for Overfitting or Misinterpretation Bandpass fil-
tering risks: The application of individual bandpass filters for
different frequency ranges can sometimes lead to overfitting,
especially when interpreting small variations in spectral power.
If the filters are too narrow or not optimally designed, sub-
tle frequency content outside the predefined bands might be
excluded or misrepresented. Interpretation of results: While
spectral power analysis provides clear insights into the domi-
nant frequencies in the EEG signal, it does not directly reveal
causal relationships between brain regions or networks. The
analysis is limited to correlations between signal power and
physiological or behavioral states, which might not capture
the full complexity of neural mechanisms.

Limited Capability for Handling Artifacts Artifact rejection:
Although filtering helps to reduce some noise, the method
described in the paper doesn’t directly address the rejection of
artifacts such as eye movements, muscle activity, or electrical
noise. Independent Component Analysis (ICA) or other ar-
tifact rejection methods might be more effective in isolating
and removing these unwanted signals, but this approach was
not part of the analysis pipeline. The original rationale for not
including these extra filters is primarily due to SEEG’s inherent
strength of not picking up noise due to its depth inside the
brain itself.

Computational Complexity and Efficiency Computational
cost: The use of time-frequency methods like the wavelet
transform can be computationally intensive, especially when
applied to large datasets or long time series. While these meth-
ods are powerful, they can result in long processing times
or require substantial memory resources, particularly if the
dataset includes multiple channels.

6. Conclusion
This paper detailed a memory-efficient pipeline for processing
large SEEG datasets, addressing the challenges posed by data
volume and complexity. By employing standard yet robust
techniques like FIR filtering, FFT, STFT, Welch’s method,
and Morlet wavelets, the pipeline facilitates reproducible anal-
ysis of key frequency bands while managing computational
resources. The discussion highlighted the strengths, such as
clear frequency separation and use of established methods,
alongside limitations including the focus on linear analysis and
fixed parameters. This approach offers a practical framework
for researchers needing to analyze extensive SEEG recordings
efficiently.
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